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Further examples of the use of Likelihood

This is one of a set of Supplementary Notes and Chapters &xi$on Cosmology”.

Some of these Supplements might have been a chapter in thatbel, but were regarded either as
being somewhat more specialised than the material elsevithéne book, or somewhat tangential
to the main subject matter.

The are mostly early drafts and have not been fully prooftrea

Please send comments on errors or ambiguitieBtedisionCosmology(at)gmail.com”.
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Likelihood In action

1.1 Likelihood Functions
. |

1.1.1 Examples: Exponential, Gaussian and Bernoulli

If the measurementisq} of an experiment are taken from a Gaussian distribution abou
a to-be-determined meanand variancer we can write the probability of making those
particularn measurements as

S (% —p)?
L(u, 0 X1,..., %) = ex —(—) 1.1
i ] bl = (1.1)
Taking the log of this we get
1 (% —p)?
|n-£(/.l,0'|X1,...,Xn):_§Z(Xlo—zﬂ) —gln(27r0'2) (1.2)

We shall use this in the next section to determirendo from the measurements;}.

1.1.2 Examples: Bernoulli trials

Bernoulli trials

Ex 1.1.1 An experiment consists of Bernoulli trials each with the same probability
of success). The result of a single experiment is either ‘1’ or ‘0’ withgtrability
0 or (1- 0). The result of the sequencem&uch trials can be thought of as a
sequence of 1's (“success”) and 0's (“failure”), and so espnted by a vector
X = {Xq, ..., Xy} of zeros and ones. Show that the likelihood o$

LX) =6(1-6"", r=(Zix)isthe number of 1’s i 1.3)
Show that the log likelihood for this experiment is

logL@|x)=nxIn6+ (n—r)(L-X)In(1-6), X=r/n (1.4)

SourceLikeExamples.tex Supplements Precision CosmologgR.J.T. Jones) rev. v1.2) —May 1, 2017



Check this

carefully!

Likelihood in action

1.2 Maximum Likelihood estimators
|

Suppose that we have a theory involving some to-be-detechparameters; (j = 1,...,n).
The theory predicts values of measurable quantiigs = 1,..., N) in terms of thea;:
& = &(ay,...,an). Now perform an experiment the outcome of which is a measearg
of the N quantities;, yielding valuesx; with Gaussian distributed errors having standard
deviationo (i = 1,..., N). How do we estimate the parametajof the theory?

The Likelihood function is proportional to the probability getting this data set, and
given the Gaussian nature of the error distribution, this is

1 N (x — &)2
L(ag,...,an) = W exp[— ; %} (1.5)
Remember that thg are the quantities that our experiments would measure dvetsis of
a model parametrised by the parametgrshat is where the; come in on the right hand
side.

We wish to select the parametesso as to maximize this expression. This is obviously
equivalent to minimizing the exponent, which we can write as

N
%Xz(aj) — Z (Xl - é:i)2 (16)
i=1

20'i2

Because we are minimizing a sum of squares, this is refeaed aLeast Squares Fit
Differentiating with respect to each of thgyields a set of equations

N
Z;(”Uf”5§;=0» i=1...n (1.7)

For a general functiog(ay, ..., an) this is a nonlinear set of equations, and the fitting
procedure is referred to more precisely amalinear least squares fit

We can make easy progress if the functifay, . . ., an) is linear in thea;. Write this
linear relationship in matrix form for convenience:

£=Ca (1.8)
where the matrixC is not necessarily square. Define a new mdiriwhose elements are

Dij = (O:_—JJZ' (1.9)
and with this calculate théata vectorX corresponding to the measured deta

X = Dx (1.10)

This involves known quantities on the right hand side. Ihisrt easy to show that

X=Ma, M=DC (1.11)
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Maximum Likelihood parameter estimation

Even thoughC may not be not square, theeasurement matrid is square and symmetric
and depends only on the errors.
The maximum likelihood estimator of the paramei@rss then

a=M"1X (1.12)

It can be shown that the standard error for the paransgter given by thejth diagonal

element of the inverse dfl :
Aaj = \|(M)j; (1.13)

(with no summation on repeated indices). HeNt# is called theerror matrix.
Note thatM ! may have @-diagonal terms: this would happen if the parameggrgere
not statistically independent so that their errors weremi¢pendent.

1.3 Maximum Likelihood parameter estimation

Let us look at the examples of likelihood functions derivedéction 1.1.

1.3.1 Exponential ML, again

Equation @7?) gives the log-likelihood for the fitting the exponentiasttibution model to
the decay lifetimes of particles. The maximum of the loglilkood is given by

d 1< n
— | = — ti——=0 1.14
5N L@) TZ;. . (1.14)
so that the maximum likelihood estimator for the lifetime is
1 n
= > (1.15)
i=1

This is just the mean of the observed lifetimes. Formally n@sd write this agy (t1 .. ., tn)
since its value depends directly on the data.

Ex 1.3.1 Show that
Elrme(ts,....t)] =7 (1.16)

This shows that this estimate is anbiased estimatoof 7. Not all maximum
likelihood estimators are unbiased, except in the limindifitely large samples.
Hint: Since the individual observatiohsare independent, you can express
E[tmL(ts, ..., tn)] as a product of integrals over the p.d.p&;, 7) = exp(-ti/7) of
thei™™ observation (see equation).
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4 Likelihood in action

Ex 1.3.2 The decay rate is the quantity= 1/7. Use the invariance property of the
likelihood function to show that

Lty ... tn) = (1.17)

n
it

Note that this estimator of the decay rate is not unbiagadept in the limit of large
samples:

E[Aw] = n%la (1.18)

To demonstrate this is morefficult than deriving (1.16) since you will need to know how
to do a particular multiple integral

1.3.2 Gaussian ML

There are two parameters to determine when the model foratagxd, . . ., X} is a Gaus-
sian distribution for a single random variable: the mgeaand the variancer. The maxi-
mum of the likelihood function occurs where both derivasio¢ In £(u, o) are zero:

3] _ 1<
@L(ﬂ’ 0)=0: = um = ﬁ ; Xi (1.19)
0 1<
2o Llno) =0 = ow = ;(m— — umL)? (1.20)

There is a simpler alternative to getting the valug:gf than to maximise IL(u, o),
which is to note thail as given in equation (1.1) can be written

(% —

Lo lX, . %) = (zﬂ)n/z exp- Z 202 (1.21)
which reaches a maximum when the exponent reaches a miniWarman write the expo-
nent as

1, 5 (% — p)?
Sy 1.22
2X ; 202 (1.22)

Minimising this with respect ta yields the same estimate as before. It should be noted
that this estimator of the variance of the Gaussian is a Biesgémator. The interest of this

is that it shows the close relationship between the maxiniketihood estimator antbast
squares fittingn the case of Gaussian distributions.

1 Reminder: an estimatofestimateof @ random variablé is unbiased iXestimate= E [X]. The estimatXestimate

is said the beonsistenif in the limit of large samples lifL, o Xestimate= E [X].
2 To do this you need to know that

f f e(X1+ +Xn) . 1
Xe ot X A

This is derived from Gradshteyn and Ryzhik (2007, entr;egal).
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Maximum Likelihood parameter estimation

1.3.3 Bernoulli ML

Going back to Exercise (1.1.1), we can find the maximum of dlgelikelihood by

din£(@) r 1 1
R Uk w R thL_n_n;)(' (1.23)
which is the fraction of 1’s in the sequenpe).

1.3.4 Lognormal ML

The p.d.f. for the lognormal distribution with mearand variance? is

(Inx — 1))
202

fx(X) = = exp (1.24)

X\V2ro

If we assume, for simplicity, that the variance is known,diné part of the expression for
the log-likelihood of a datas¢k;},i = 1,...,nis the term containing:

n
log L(u) = u-independent sfii — 1 Z(In X — w)? (1.25)
202 -
Differentiating with respect {@ gives
dlog L 1
S Y- (1.26)

and so the maximum likelihood estimator,ofs

1
pa = = ) In (1.27)

This is just the mean of the log-data.

Ex 1.3.3 Given a lognormal model of known varianeé and a dataset
{xi},i =1,...,n, what is the maximum likelihood estimate of.

Ex 1.3.4 |Ifdata{x},i =1,...,nis to be modelled by a lognormal distribution of
which neither the meag nor variancer? is known, show that the maximum
likelihood estimators of, o- are given by

1 1
HmL = o Z Inx;, O-ﬁIIL = nh Z(Inxi — pmL)? (1.28)

Hint: use the invariance property of the maximum likelih@estimators (1.19)
and (1.20) of the parameters defining the Gaussian diswibtrom which the
lognormal is derived.
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6 Likelihood in action

1.4 Example of error estimates
|

1.4.1 Exponential distribution

An example where there is lack of symmetry in the likelihoaddtion is given by our
particle decay model. We have

2 n
alnL(T)z_ZZti+n n

— —=-= 1.29
ot? 3 L 72 72 (1.29)
This gives an error estimate based on the curvature of thkHiod function of
2n £\ Y2
o, = (_a 2‘5) = (1.30)
or — nz

The problem with this in this case is that the log-likelihdadction In£(7) is not sym-
metric about its maximufand so the temptation to quote error bars on the determmatio
of 7, on the basis of the data}, in the formry. + o- would be misleading.

One way out of this in this case is not to use the curvatureefdb-likelihood, but to
use an alternative error estimate. An alternative to curesis the width of logC at half
the maximum height lod’(tmi)/2). If we define the left and right erroes_, o, by

oc=0_,0,: logL(t+0)= % log L(TmL) (1.31)

we can then quote the result of the experiment'ds, remembering to say that this is the
half-height error estimate.

1.4.2 Fitting power laws: Pareto

A simple example of likelihood parameter estimation is giby the common astronom-
ical problem of fitting a power law to a set of data taking pesivalues. This was first
tackled in the astronomical literature by Crawford et aB4Q@) who discussed it in the
context of fitting radio source counts and has been taken up recently by Maschberger
and Kroupa (2009) who discussed it in the context of stellassrfunctions. Other, more
general treatments are found in Beg (1983) and Aban et a06(20
The statistical distribution to be fitted to a setradata points is the power law
a—-1 _
P(X; @, Xmin, Xmax) = Ta s X *, a>1, 0< Xnin < X < Xmax (1.32)
Xmin — Xmax

Fora > 1 the lower boundky, is necessary for convergence. For the purpose of this
example we shall consideg,n to be known and derive an equation for the estimaigr
of the slope parameter.

3|
3 Itis easily verified thataa—nf #0
T

™L
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Example of error estimates

The likelihood function for observatiorn;} atn points is

n

Lo, Xma) = | | PO @, X (1.33)

i=1

from which we can calculate the log likelihood function as
n
In £ = nin(e — 1) - nin(xto — xk2) - az In (1.34)
i=1

This can be dterentiated with respect toto find the maximum likelihood estimatary,, .

We can simplify things further by making the simplificatidrat Xnax — co. This then
becomes th@areto Distributionwhich is commonly seen in the world of economics. Our
likelihood is then

n
In £(e) = nIn(e = 1) + n(a — 1) I Xpin — a/Z In x; (1.35)
i=1
Here L(«) does not contain an explicit dependencexa, since we have temporarily
assumed that the value &f,i, is known. Notice that this is a nonlinear function of the
model parametet that we wish to determine, and so it does not fall into the fafm
equation (1.8) describing linear least squares fitting.
Maximizing this likelihood relative to the parametegives:

%_ N
o a-1

N
+Nlnxmin—ZInxi=O (1.36)
i=1

which provides the maximum likelihood estimatoof a:

1 N
&—1:[— In

It should be noted that(= 1) is simply the mean of the logarithms of the normalized
observations.
The error analysis follows simply by noting that

o°L L
_2 _ ~
Ta = _<602> a _(802) - (1.38)

whence the expected statistical error is

-1

] (1.37)

Xi
Xmin

1
Og = —
VN

The situation with finitexmay is considerably more complex.
Note that this estimator is not an unbiased estimator, thalg bias disappears as the
sample size increases.

(@-1) (1.39)
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8 Likelihood in action

1.4.3 Estimating Xmin

What happens if we do not know;n, how do we determine it? That is part of the beauty of
the likelihood approach: if we want an estimator fgf, we simply regard it as a parameter
on the same footing as and regard the log likelihood as a function of the variabdelse
determinedL = L(Xmin, @). It is evident from equation (1.35) thbfXmin, @) is @ monotonic
increasing function okqmin for @ > 1. So the maximum of the log likelihood, viewed as a
function of xmin is achieved for the smallest of thr}. If we regard the data valugs} as

an ordered sequence then

Kmin = X1, (1.40)

the smallest of the data values. This should not occasiosapyise.

Ex 1.4.1 Show that fom observation$x;,i = 1,...,n} of the model
f(x,0) =601 0<x<@:
L) =6", 0<maxx}<¥é (1.41)

This is an example of a likelihood function that is not bélaped.

1.5 ML linear regression

As an important example of the maximum likelihood method e ook at the task of
fitting a straight line through a set of points,(y;) in which they; values are subject to
an uncertainty, or error, that is modelled as a Gaussianhilitbn of zero mean and vari-
ancec? 4. Note that the variance does not depend on the valug. @ur model for the

distribution of points is then

Yi =@ +pBX +6 (1.42)

whereg is the to-be-determined slope of the line and its y-axis intercept. The errors
& areN(0, o) distributed random variables. The parameters to be détechior the data
D:(x,y)={(x. V), i =1,...,n}area, B, o. The likelihood£(e, 8, ) is the product of
the individual likelihoods:
2 1 1 : 2
Ll(a,p,0%) = @rody expl 53 ;[Yi — (@ +px)] (1.43)

4 We could write this as|x to emphasise that this is the varianceyigiven x

SourceLikeExamples.tex Supplements Precision Cosmologgg.J.T. Jones) rev. v1.2) —May 1, 2017



ML linear regression

since, according to our model,= y; — (@ + 8%). The log-likelihood is

n

In L(e. 8,07 = —g In(2ro?) - Tiz Dy = (a+ )P (1.44)

i=1
Finding the maximum of It(a, 8, 0%) by differentiating with respect to each of the pa-
rametersy, 8, o2 in turn yields the system of equations

Ex 1.5.1
% InL(a,B,02): an+BIx = Ty, (1.45)
a%In L(@,B,0%): aZx +BIX = XY (1.46)
9 2y . 2 _ i 3 &\ 2
7oz N L@po?): o? = Z(y. — %) (1.47)

whereay andgy. are the solutions of (1.46) and (1.46) and-"(amL + BmLX)
is the maximum likelihood fit to the value gfat ;.

There are two remarks to be made about this. Firstly, the maxi likelihood estimate
(1.47) of the variance? is biased and underestimates the the variance. The unisiased
ple variance is

$= 1S -9 (1.48)

The divisor isn — 2 because there are two other disposable constaygsthat we can
choose so as to male as small as possible. The second remark is that the matrix

n XX
I = (in EXI?) (1.49)

is called thenformation matrix

Ex 1.5.2 Show from equation (1.44),

9?2 92

_ da? oa 0B »_ 1 (n XX

H= 52 8_2 |I"I£(a',ﬁ,0')——; £ inz (1.50)
dadp B>

This is theHessianof the log-likelihood.

5 There is a complete discussion of this from the point of viéw?3fitting in Press et al. (2007, Section 15.2),
where the discussion allows each measurement to have itsanamce. Their matris in that section is the
normalised information matrix of equation 1.49 .
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Likelihood in action

1.6 The Inverse Gamma distribution

The Inverse Gamma distribution plays a special role in Baydgsference. It is a function
that can conveniently be used as a prior when estimatingeof/#hiance of a Gaussian
whose mean is known: it yields analytic expressions for stemates. Of course, there
has to be a judgement of the appropriateness of such a clgich. convenient pairs of
distributions are referred to @snjugate prior distributions

Thelnverse Gamma Distributioaf a variatex is defined by two parameters: tebape
parametere > 0 and thescale parameteg > O:

g(x; a.B) = B ot i (1.51)
(@)

wherel'() is the standard Gamma function. The inverse gamma disitvibbis the distri-
bution of a variate whose inverse is itself Gamma distridute

The following example shows how to estimate the parametetiseolnverse Gamma
function, given a set of observations drawn from that distion.

Ex 1.6.1 We wish to provide estimators farandg given a set o observations;
from this distribution. Show that the log-likelihoddis

N
_ B _B
L= .Z‘ [In ) (@ +1)InX% )Q} (1.52)

Ex 1.6.2 By differentiatingL with respect to each ef andg, show that the
likelihood estimatorsr andg are given by

@ 141 _1.di(@)  1xh, o
E‘N;%’ Inﬁ_m . +N;'”x' (1.53)

Ex 1.6.3 Hence show that is given by the solution of

19 191
Ina—:ﬁ(a):NZInXiHn NZZ (1.54)
i=1 i=1

wherey/() is theDigammaor Psifunction defined ag(x) = I (X)/T'(X).
Ex 1.6.4 How would you propose to solve equation (1.54)7?
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11 A simple astronomical example

1.7 A simple astronomical example
|
Also need a more
substantial It IS instructive to give a simple example of how Maximum Likeod is used in practise.
example We will show how to estimate the velocity of the Galaxy relative to a sample of galaxies

distributed around the sky. It will be supposed that we hadshift independent distance
estimateg, for the galaxies in the sample. We can therefore estimatettial component
of the peculiar velocity of each galaxy, over and above the Hubble flow: = cz— Hd,
(czis the observed recession velocity).

Suppose that in a sample of galaxies, galbig/observed in directiofy and that it is
assigned a radial component of peculiar velogjtySuppose further that the probable error
in measuringy, is o (the error is a consequence of the uncertainty in the distastimate).

The component of our velocity relative to the sample in the direction of galdxg U,
is f.U. The velocity of galaxy relative to the sample is therefoue— 7.U. Hence on the
assumption that the errors are Gaussian, the likelihooldeoéntire data set is

1 (u —ﬂ.U)Z]
Ui1,Up,U3) = -
R

We wish to chose the componentslfthat maximize this. To this end we take the log-
arithm of this expression, thus turning the product into msand then dferentiate with
respect to the components of U. This gives

uf fif;
U=A™) 5 A=) (1.56)
|

(1.55)

The matrixA contains only information about the directions in which tiedaxies are
observed and the errors in measuring a radial velocity.

Since it is harder to measure the distances of the furthdaxiga in the sample, the
erroro increases with distance. The most distant galaxies in tiplkestherefore have the
least weight. The error analysis is, however, very com@idan part because the vectors
fi are not in fact randomly distributed on the sky: there is aezoihavoidance to contend
with, and we know the vectors are correlated since galaigen tlusters and the clusters
themselves are correlated.

This is an important problem in cosmology because we woldkl o know what our
motion is relative to the most distant systems of galaxies.dah obtain an alternative
measure of this by observing the dipole anisotropy of thentosnicrowave background
radiation. The two estimates should agree in magnitude aadtibn.

It is the inverse ofA which comes into the solution fdy. In this exampleA is a 3x3
matrix when there are 3 velocity components to determinaveyer, for a problem in
which there were 1000 parameters to determine, this woulthrimeverting a 1000-square
matrix. In many casesh would be an almost diagonal matrix in which case there are
special techniques to deal with thdfieiently. In the general case special techniques are
required, see for example Golub and van Loan (1996).
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