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Further examples of the use of Likelihood

This is one of a set of Supplementary Notes and Chapters to “Precision Cosmology”.
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to the main subject matter.
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1 Likelihood in action

1.1 Likelihood Functions

1.1.1 Examples: Exponential, Gaussian and Bernoulli

If the measurements{xi} of an experiment are taken from a Gaussian distribution about
a to-be-determined meanµ and varianceσ we can write the probability of making those
particularn measurements as

L(µ, σ | x1, . . . , xn) =
n

∏

i=1

1
√

2πσ
exp−

(

(xi − µ)2

2σ2

)

(1.1)

Taking the log of this we get

lnL(µ, σ | x1, . . . , xn) = −1
2

n
∑

i=1

(xi − µ)2

σ2
− n

2
ln(2πσ2) (1.2)

We shall use this in the next section to determineµ andσ from the measurements{xi}.

1.1.2 Examples: Bernoulli trials

Bernoulli trials

Ex 1.1.1 An experiment consists ofn Bernoulli trials each with the same probability
of success,θ. The result of a single experiment is either ‘1’ or ‘0’ with probability
θ or (1− θ). The result of the sequence ofn such trials can be thought of as a
sequence of 1’s (“success”) and 0’s (“failure”), and so represented by a vector
x = {x1, . . . , xn} of zeros and ones. Show that the likelihood ofθ is

L(θ | x) = θr (1− θ)n−r , r = (Σi xi) is the number of 1’s inx (1.3)

Show that the log likelihood for this experiment is

logL(θ | x) = nx̄ ln θ + (n− r)(1− x̄) ln(1− θ), x̄ = r/n (1.4)

1
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2 Likelihood in action

1.2 Maximum Likelihood estimators

Check this

carefully! Suppose that we have a theory involving some to-be-determinedparametersa j ( j = 1, . . . , n).
The theory predicts values of measurable quantitiesξi (i = 1, . . . ,N) in terms of thea j:
ξi = ξi(a1, . . . , an). Now perform an experiment the outcome of which is a measurement
of theN quantitiesξi , yielding valuesxi with Gaussian distributed errors having standard
deviationσi (i = 1, . . . ,N). How do we estimate the parametersa j of the theory?

The Likelihood function is proportional to the probabilityof getting this data set, and
given the Gaussian nature of the error distribution, this is

L(a1, . . . , an) =
1

(2π)N/2
exp















−
N

∑

i=1

(xi − ξi)2

2σ2
i















(1.5)

Remember that theξi are the quantities that our experiments would measure on thebasis of
a model parametrised by the parametersa j : that is where thea j come in on the right hand
side.

We wish to select the parametersa j so as to maximize this expression. This is obviously
equivalent to minimizing the exponent, which we can write as

1
2
χ2(a j) =

N
∑

i=1

(xi − ξi)2

2σ2
i

(1.6)

Because we are minimizing a sum of squares, this is referred to as aLeast Squares Fit.
Differentiating with respect to each of thea j yields a set of equations

N
∑

i=1

(xi − ξi)

σ2
i

∂ξi

∂a j
= 0, j = 1. . . . , n. (1.7)

For a general functionξ(a1, . . . , an) this is a nonlinear set of equations, and the fitting
procedure is referred to more precisely as anonlinear least squares fit.

We can make easy progress if the functionξ(a1, . . . , an) is linear in thea j . Write this
linear relationship in matrix form for convenience:

ξ = Ca (1.8)

where the matrixC is not necessarily square. Define a new matrixD whose elements are

Di j =
C ji

σ2
j

(1.9)

and with this calculate thedata vectorX corresponding to the measured datax:

X = Dx (1.10)

This involves known quantities on the right hand side. It is then easy to show that

X = Ma, M = DC (1.11)
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3 Maximum Likelihood parameter estimation

Even thoughC may not be not square, themeasurement matrixM is square and symmetric
and depends only on the errors.

The maximum likelihood estimator of the parametersa j is then

a = M−1X (1.12)

It can be shown that the standard error for the parametera j is given by thejth diagonal
element of the inverse ofM :

∆a j =

√

(M−1) j j (1.13)

(with no summation on repeated indices). HenceM−1 is called theerror matrix.
Note thatM−1 may have off-diagonal terms: this would happen if the parametersa j were

not statistically independent so that their errors were notindependent.

1.3 Maximum Likelihood parameter estimation

Let us look at the examples of likelihood functions derived in section 1.1.

1.3.1 Exponential ML, again

Equation (??) gives the log-likelihood for the fitting the exponential distribution model to
the decay lifetimes of particles. The maximum of the log-likelihood is given by

d
dt

lnL(τ) =
1
τ2

n
∑

i=1

ti −
n
τ
= 0 (1.14)

so that the maximum likelihood estimator for the lifetime is

τML =
1
n

n
∑

i=1

ti (1.15)

This is just the mean of the observed lifetimes. Formally we should write this asτML(t1 . . . , tn)
since its value depends directly on the data.

Ex 1.3.1 Show that

� [τML(t1, . . . , tn)] = τ (1.16)

This shows that this estimate is anunbiased estimatorof τ. Not all maximum
likelihood estimators are unbiased, except in the limit of infinitely large samples.
Hint: Since the individual observationsti are independent, you can express
� [τML(t1, . . . , tn)] as a product of integrals over the p.d.f’sp(ti , τ) = exp(−ti/τ) of
the ith observation (see equation??).
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4 Likelihood in action

Ex 1.3.2 The decay rate is the quantityλ = 1/τ. Use the invariance property of the
likelihood function to show that

λML(t1, . . . , tn) =
n
Σi ti

(1.17)

Note that this estimator of the decay rate is not unbiased1 except in the limit of large
samples:

� [λML] =
n

n− 1
λ (1.18)

To demonstrate this is more difficult than deriving (1.16) since you will need to know how
to do a particular multiple integral2.

1.3.2 Gaussian ML

There are two parameters to determine when the model for the data{x1, . . . , xn} is a Gaus-
sian distribution for a single random variable: the meanµ and the varianceσ. The maxi-
mum of the likelihood function occurs where both derivatives of lnL(µ, σ) are zero:

∂

∂µ
L(µ, σ) = 0 : ⇒ µML =

1
n

n
∑

i=1

xi (1.19)

∂

∂σ
L(µ, σ) = 0 : ⇒ σML =

1
n

n
∑

i=1

(xi − µML)2 (1.20)

There is a simpler alternative to getting the value ofµML than to maximise lnL(µ, σ),
which is to note thatL as given in equation (1.1) can be written

L(µ, σ | x1, . . . , xn) =
1

(2π)n/2σn
exp−

n
∑

i=1

(xi − µ)2

2σ2
(1.21)

which reaches a maximum when the exponent reaches a minimum.We can write the expo-
nent as

1
2
χ2
=

n
∑

i=1

(xi − µ)2

2σ2
(1.22)

Minimising this with respect toµ yields the same estimate as before. It should be noted
that this estimator of the variance of the Gaussian is a biased estimator. The interest of this
is that it shows the close relationship between the maximum likelihood estimator andleast
squares fittingin the case of Gaussian distributions.

1 Reminder: an estimatorXestimateof a random variableX is unbiased ifXestimate= � [X]. The estimateXestimate

is said the beconsistentif in the limit of large samples limn→∞ Xestimate= � [X].
2 To do this you need to know that

∫ ∞

0
. . .

∫ ∞

0

e−(x1+···+xn)

x1 + · · · + xn
dx1 . . . dxn =

1
n− 1

This is derived from Gradshteyn and Ryzhik (2007, entry #4.638.1).
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5 Maximum Likelihood parameter estimation

1.3.3 Bernoulli ML

Going back to Exercise (1.1.1), we can find the maximum of the log-likelihood by

d lnL(θ)
dθ

=
r
θ
− (n− r)

1
1− θ ⇒ θML =

r
n
=

1
n

n
∑

i=1

xi (1.23)

which is the fraction of 1’s in the sequence{xi}.

1.3.4 Lognormal ML

The p.d.f. for the lognormal distribution with meanµ and varianceσ2 is

fX(x) =
1

x
√

2πσ
exp− (ln x− µ)2)

2σ2
(1.24)

If we assume, for simplicity, that the variance is known, theonly part of the expression for
the log-likelihood of a dataset{xi}, i = 1, . . . , n is the term containingµ:

logL(µ) = µ-independent stuff − 1
2σ2















n
∑

i=1

(ln xi − µ)2















(1.25)

Differentiating with respect toµ gives

d logL(µ)
dµ

=
1
σ2

∑

(ln xi − µ) (1.26)

and so the maximum likelihood estimator ofµ is

µML =
1
n

∑

ln xi (1.27)

This is just the mean of the log-data.

Ex 1.3.3 Given a lognormal model of known varianceσ2 and a dataset
{xi}, i = 1, . . . , n, what is the maximum likelihood estimate ofµ3.

Ex 1.3.4 If data{xi}, i = 1, . . . , n is to be modelled by a lognormal distribution of
which neither the meanµ nor varianceσ2 is known, show that the maximum
likelihood estimators ofµ, σ are given by

µML =
1
n

∑

ln xi , σ2
ML =

1
n

∑

(ln xi − µML)2 (1.28)

Hint: use the invariance property of the maximum likelihoodestimators (1.19)
and (1.20) of the parameters defining the Gaussian distribution from which the
lognormal is derived.
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6 Likelihood in action

1.4 Example of error estimates

1.4.1 Exponential distribution

An example where there is lack of symmetry in the likelihood function is given by our
particle decay model. We have

∂2lnL(τ)
∂τ2

= − 2
τ3

n
∑

i=1

ti +
n
τ2
= − n

τ2
(1.29)

This gives an error estimate based on the curvature of the likelihood function of

στ =

(

−∂
2lnL
∂τ2

)−1/2 ∣

∣

∣

∣

∣

∣

τ=τML

=
τML

n
1
2

(1.30)

The problem with this in this case is that the log-likelihoodfunction lnL(τ) is not sym-
metric about its maximum3 and so the temptation to quote error bars on the determination
of τ, on the basis of the data{ti}, in the formτML ± σ would be misleading.

One way out of this in this case is not to use the curvature of the log-likelihood, but to
use an alternative error estimate. An alternative to curvature is the width of logL at half
the maximum height logL(τML)/2). If we define the left and right errorsσ−, σ+ by

σ = σ−, σ+ : logL(τ + σ) =
1
2

logL(τML) (1.31)

we can then quote the result of the experiment asτ
+σ+
−σ− , remembering to say that this is the

half-height error estimate.

1.4.2 Fitting power laws: Pareto

A simple example of likelihood parameter estimation is given by the common astronom-
ical problem of fitting a power law to a set of data taking positive values. This was first
tackled in the astronomical literature by Crawford et al. (1970) who discussed it in the
context of fitting radio source counts and has been taken up more recently by Maschberger
and Kroupa (2009) who discussed it in the context of stellar mass functions. Other, more
general treatments are found in Beg (1983) and Aban et al. (2006).

The statistical distribution to be fitted to a set ofn data points is the power law

p(x;α, xmin, xmax) =
α − 1

x1−α
min − x1−α

max
x−α, α > 1, 0 < xmin < x < xmax (1.32)

For α > 1 the lower boundxmin is necessary for convergence. For the purpose of this
example we shall considerxmin to be known and derive an equation for the estimatorαML

of the slope parameterα.

3 It is easily verified that
∂3 lnL
∂ τ3

∣

∣

∣

∣

∣

∣

τML

, 0
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7 Example of error estimates

The likelihood function for observations{xi} atn points is

L(α, xmax) =
n

∏

i=1

p(xi ;α, xmax) (1.33)

from which we can calculate the log likelihood function as

lnL = n ln(α − 1)− n ln(x1−α
min − x1−α

max) − α
n

∑

i=1

ln xi (1.34)

This can be differentiated with respect toα to find the maximum likelihood estimator,αML.
We can simplify things further by making the simplification that xmax→ ∞. This then

becomes thePareto Distributionwhich is commonly seen in the world of economics. Our
likelihood is then

lnL(α) = n ln(α − 1)+ n(α − 1) ln xmin − α
n

∑

i=1

ln xi (1.35)

HereL(α) does not contain an explicit dependence onxmin since we have temporarily
assumed that the value ofxmin is known. Notice that this is a nonlinear function of the
model parameterα that we wish to determine, and so it does not fall into the formof
equation (1.8) describing linear least squares fitting.

Maximizing this likelihood relative to the parameterα gives:

∂L
∂α
=

N
α − 1

+ N ln xmin −
N

∑

i=1

ln xi = 0 (1.36)

which provides the maximum likelihood estimator ˆα of α:

α̂ − 1 =















1
N

N
∑

i=1

ln
xi

xmin















−1

(1.37)

It should be noted that ( ˆα − 1)−1 is simply the mean of the logarithms of the normalized
observations.

The error analysis follows simply by noting that

σ−2
α = −

〈

∂2L
∂α2

〉

≃ −
(

∂2L
∂α2

)

α=α̂

(1.38)

whence the expected statistical error is

σα ≃
1
√

N
(α − 1) (1.39)

The situation with finitexmax is considerably more complex.
Note that this estimator is not an unbiased estimator, though the bias disappears as the

sample size increases.
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8 Likelihood in action

1.4.3 Estimating xmin

What happens if we do not knowxmin, how do we determine it? That is part of the beauty of
the likelihood approach: if we want an estimator forxmin we simply regard it as a parameter
on the same footing asα and regard the log likelihood as a function of the variables to be
determined:L = L(xmin, α). It is evident from equation (1.35) thatL(xmin, α) is a monotonic
increasing function ofxmin for α > 1. So the maximum of the log likelihood, viewed as a
function ofxmin is achieved for the smallest of the{xi}. If we regard the data values{xi} as
an ordered sequence then

x̂min = x1, (1.40)

the smallest of the data values. This should not occasion anysurprise.

Ex 1.4.1 Show that forn observations{xi , i = 1, . . . , n} of the model
f (x, θ) = θ−1, 0 < x < θ:

L(θ) = θ−n, 0 < max{xi} < θ (1.41)

This is an example of a likelihood function that is not bell-shaped.

1.5 ML linear regression

As an important example of the maximum likelihood method we can look at the task of
fitting a straight line through a set of points (xi , yi) in which theyi values are subject to
an uncertainty, or error, that is modelled as a Gaussian distribution of zero mean and vari-
anceσ2 4. Note that the variance does not depend on the value ofxi . Our model for the
distribution of points is then

yi = α + βxi + ǫi (1.42)

whereβ is the to-be-determined slope of the line andα is its y-axis intercept. The errors
ǫi areN(0, σ) distributed random variables. The parameters to be determined for the data
D : (x, y) = {(xi , yi), i = 1, . . . , n} areα, β, σ2. The likelihoodL(α, β, σ2) is the product of
the individual likelihoods:

L(α, β, σ2) =
1

(2πσ2)n/2
exp















1
2σ2

n
∑

i=1

[yi − (α + βxi)]
2















(1.43)

4 We could write this asσy | x to emphasise that this is the variance iny given x
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9 ML linear regression

since, according to our model,ǫi = yi − (α + βxi). The log-likelihood is

lnL(α, β, σ2) = −n
2

ln(2πσ2) − 1
2σ2

n
∑

i=1

[

yi − (α + βxi)
]2 (1.44)

Finding the maximum of lnL(α, β, σ2) by differentiating with respect to each of the pa-
rametersα, β, σ2 in turn yields the system of equations5

Ex 1.5.1
∂

∂α
lnL(α, β, σ2) : αn+ βΣxi = Σyi , (1.45)

∂

∂β
lnL(α, β, σ2) : α Σxi + βΣx2

i = Σxiyi (1.46)

∂

∂σ2
lnL(α, β, σ2) : σ2

=
1
n

∑

(yi − ŷi)2 (1.47)

whereαML andβML are the solutions of (1.46) and (1.46) and ˆyi = (αML + βMLxi)
is the maximum likelihood fit to the value ofy at xi .

There are two remarks to be made about this. Firstly, the maximum likelihood estimate
(1.47) of the varianceσ2 is biased and underestimates the the variance. The unbiasedsam-
ple variance is

s2
=

1
n− 2

∑

(yi − ŷi)
2 (1.48)

The divisor isn − 2 because there are two other disposable constants,α, β, that we can
choose so as to makes2 as small as possible. The second remark is that the matrix

I =
(

n Σxi

Σxi Σx2
i

)

(1.49)

is called theinformation matrix.

Ex 1.5.2 Show from equation (1.44),

H =































∂2

∂ α2

∂ 2

∂α ∂β
∂ 2

∂α ∂β

∂2

∂ β2































lnL(α, β, σ2) = − 1
σ2

(

n Σxi

Σxi Σx2
i

)

(1.50)

This is theHessianof the log-likelihood.

5 There is a complete discussion of this from the point of view of χ2 fitting in Press et al. (2007, Section 15.2),
where the discussion allows each measurement to have its ownvariance. Their matrixS in that section is the
normalised information matrix of equation 1.49 .
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10 Likelihood in action

1.6 The Inverse Gamma distribution

The Inverse Gamma distribution plays a special role in Bayesian inference. It is a function
that can conveniently be used as a prior when estimating of the variance of a Gaussian
whose mean is known: it yields analytic expressions for the estimates. Of course, there
has to be a judgement of the appropriateness of such a choice.Such convenient pairs of
distributions are referred to asconjugate prior distributions.

The Inverse Gamma Distributionof a variatex is defined by two parameters: theshape
parameterα > 0 and thescale parameterβ > 0:

g(x;α, β) =
βα

Γ(α)
x−α−1 e−β/x (1.51)

whereΓ(α) is the standard Gamma function. The inverse gamma distribution is the distri-
bution of a variate whose inverse is itself Gamma distributed.

The following example shows how to estimate the parameters of the Inverse Gamma
function, given a set of observations drawn from that distribution.

Ex 1.6.1 We wish to provide estimators forα andβ given a set ofN observationsXi

from this distribution. Show that the log-likelihoodL is

L =
N

∑

i=1

[

ln
βα

Γ(α)
− (α + 1) lnXi −

β

Xi

]

(1.52)

Ex 1.6.2 By differentiatingL with respect to each ofα andβ, show that the
likelihood estimatorsα andβ are given by

α

β
=

1
N

N
∑

i=1

1
Xi
, ln β =

1
Γ(α)

dΓ(α)
dα

+
1
N

N
∑

i=1

ln Xi (1.53)

Ex 1.6.3 Hence show thatα is given by the solution of

lnα − ψ(α) =
1
N

N
∑

i=1

ln Xi + ln















1
N

N
∑

i=1

1
Xi















(1.54)

whereψ(α) is theDigammaor Psi function defined asψ(x) = Γ′(x)/Γ(x).
Ex 1.6.4 How would you propose to solve equation (1.54)?
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11 A simple astronomical example

1.7 A simple astronomical example

Also need a more

substantial

example

It is instructive to give a simple example of how Maximum Likelihood is used in practise.
We will show how to estimate the velocityU of the Galaxy relative to a sample of galaxies
distributed around the sky. It will be supposed that we have redshift independent distance
estimatesdl for the galaxies in the sample. We can therefore estimate theradial component
of the peculiar velocity of each galaxy,ul , over and above the Hubble flow:ul = cz− Hdl

(cz is the observed recession velocity).
Suppose that in a sample of galaxies, galaxyl is observed in direction̂r l and that it is

assigned a radial component of peculiar velocityul . Suppose further that the probable error
in measuringul isσl (the error is a consequence of the uncertainty in the distance estimate).

The component of our velocityU relative to the sample in the direction of galaxyl is U,
is r̂ .U. The velocity of galaxyl relative to the sample is thereforeul − r̂ .U. Hence on the
assumption that the errors are Gaussian, the likelihood of the entire data set is

L(U1,U2,U3) =
∏

l

1
√

2πσl

exp













− (ul − r̂ l .U)2

2σ2
l













(1.55)

We wish to chose the components ofU that maximize this. To this end we take the log-
arithm of this expression, thus turning the product into a sum, and then differentiate with
respect to the componentsUi of U. This gives

U = A−1.
∑

l

ul r̂ l

σ2
l

, Ai j =

∑

l

r̂ i r̂ j

σ2
l

(1.56)

The matrixA contains only information about the directions in which thegalaxies are
observed and the errors in measuring a radial velocity.

Since it is harder to measure the distances of the furthest galaxies in the sample, the
errorσl increases with distance. The most distant galaxies in the sample therefore have the
least weight. The error analysis is, however, very complicated in part because the vectors
r̂ i are not in fact randomly distributed on the sky: there is a zone of avoidance to contend
with, and we know the vectors are correlated since galaxies lie in clusters and the clusters
themselves are correlated.

This is an important problem in cosmology because we would like to know what our
motion is relative to the most distant systems of galaxies. We can obtain an alternative
measure of this by observing the dipole anisotropy of the cosmic microwave background
radiation. The two estimates should agree in magnitude and direction.

It is the inverse ofA which comes into the solution forU. In this example,A is a 3x3
matrix when there are 3 velocity components to determine. However, for a problem in
which there were 1000 parameters to determine, this would mean inverting a 1000-square
matrix. In many cases,A would be an almost diagonal matrix in which case there are
special techniques to deal with that efficiently. In the general case special techniques are
required, see for example Golub and van Loan (1996).
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